The predictability of mixture toxicity of demethylase inhibiting fungicides to Daphnia magna depends on life-cycle parameters.
نویسندگان
چکیده
A variety of different fungicides are found simultaneously in surface waters, among which demethylase inhibitors (DMIs) are a major group. The joint toxicity of four DMIs from different chemical classes (Fenarimol, Prochloraz, Triadimefon and Pyrifenox) was investigated in the reproduction test with Daphnia magna, following an extended protocol according to ISO 10706. We assessed the toxicity of the DMI mixtures across different endpoints and effect levels and evaluated the predictability of their joint action using Concentration Addition (CA) and Independent Action (IA). The mixture reduced fecundity, delayed molting and caused characteristic malformations in offspring in a concentration-dependent manner which is possibly due to an anti-ecdysteroid action, as previously described for individual DMIs. However, also mixture-specific effects were observed: exposed daphnids reached sexual maturity already after the third juvenile molt, and thus significantly earlier than unexposed daphnids, which needed four juvenile molts to reach maturity. This effect is not caused by any of the DMIs alone. Additionally, the percentage of aborted broods was synergistically higher than expected by either CA or IA. IA underestimates the mixture toxicity for all parameters. The predictive quality of CA differed between life history responses, but was always within a factor of two to the observed toxicity. The parameter "fecundity reduction, counting only normally developed offspring", was the most sensitive endpoint, while the parameter "fecundity reduction, counting all living offspring", was slightly less sensitive. The mixture caused a 90% reduction in fecundity at individual concentrations that only provoke 7% effect or less, which calls for a mixture-specific toxicity assessment of DMI fungicides.
منابع مشابه
Hazard assessment for a pharmaceutical mixture detected in the upper Tennessee River using Daphnia magna
Widespread use of pharmaceuticals has resulted in mixture concentrations ranging from mg/L in effluent to µg/L concentrations in surface water. In a 2008 study, 13 pharmaceuticals, ranging in amounts from 0.0028 to 0.1757 µg/l, were identified in the Tennessee River, USA and its tributaries. In order to address the need for risk assessment of environmentally relevant pharmaceutical mixtures, <e...
متن کاملShort communication-Survey of Methyl Tertiary Butyl Ether (MTBE) toxicity using bioassay on Daphnia magna
متن کامل
Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus
Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...
متن کاملEvaluation of silver nanoparticles toxicity in Daphnia magna: Comparison of chemical and green biosynthetic productions
Recently nanoparticles, particularly silver nanoparticles, are broadly used in industry, hence the contamination of the environment with AgNPs has caused considerable concern. In this study, the toxicity of biosynthetic nanosilver produced by two macroalgae: Sargassum boveanum and Ulva flexuosa extracts were compared with chemical nanosilver in Daphnia magna. Size and quality of nanoparticles e...
متن کاملToxicity Assessment of Some Conventionally Manufactured Nanoparticles to Daphnia Magna
Background and purpose: Nanoparticles (NPs) are used in different industries, including electronics, pharmaceuticals, cosmetics, healthcare, and environmental processes. Therefore, it is necessary to evaluate their toxicity in the aquatic environment. Materials and methods: The acute toxicity of six different kinds of nano-sized particulates (SiO2, Fe2O3, Al2O3, TiO2, ZnO, and MgO) to Daphnia ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Aquatic toxicology
دوره 152 شماره
صفحات -
تاریخ انتشار 2014